Identification of dual-targeted Mycobacterium tuberculosis aminoacyl-tRNA synthetase inhibitors using machine learning

Author:

Volynets Galyna P1ORCID,Usenko Mariia O2ORCID,Gudzera Olga I3,Starosyla Segiy A14ORCID,Balanda Anatoliy O1ORCID,Syniugin Anatolii R1,Gorbatiuk Oksana B2,Prykhod'ko Andrii O15ORCID,Bdzhola Volodymyr G1ORCID,Yarmoluk Sergiy M1,Tukalo Michael A3ORCID

Affiliation:

1. Department of Medicinal Chemistry, Institute of Molecular Biology & Genetics, the NAS of Ukraine, Kyiv, 03143, Ukraine

2. Department of Cell Regulatory Mechanisms, Institute of Molecular Biology & Genetics, the NAS of Ukraine, Kyiv, 03143, Ukraine

3. Department of Protein Synthesis Enzymology, Institute of Molecular Biology & Genetics, the NAS of Ukraine, Kyiv, 03143, Ukraine

4. RECEPTOR.AI, Boston, MA 01234, USA

5. Scientific Services Company Otava Ltd, Kyiv, 03143, Ukraine

Abstract

Background: The most serious challenge in the treatment of tuberculosis is the multidrug resistance of Mycobacterium tuberculosis to existing antibiotics. As a strategy to overcome resistance we used a multitarget drug design approach. The purpose of the work was to discover dual-targeted inhibitors of mycobacterial LeuRS and MetRS with machine learning. Methods: The artificial neural networks were built using module nnet from R 3.6.1. The inhibitory activity of compounds toward LeuRS and MetRS was investigated in aminoacylation assays. Results: Using a machine-learning approach, we identified dual-targeted inhibitors of LeuRS and MetRS among 2-(quinolin-2-ylsulfanyl)-acetamide derivatives. The most active compound inhibits MetRS and LeuRS with IC50 values of 33 μm and 23.9 μm, respectively. Conclusion: 2-(Quinolin-2-ylsulfanyl)-acetamide scaffold can be useful for further research.

Funder

The National Research Foundation of Ukraine

Publisher

Future Science Ltd

Subject

Drug Discovery,Pharmacology,Molecular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3