Novel neuraminidase inhibitors: identification, biological evaluation and investigations of the binding mode

Author:

Kirchmair Johannes1,Rollinger Judith M2,Liedl Klaus R1,Seidel Nora3,Krumbholz Andi3,Schmidtke Michaela

Affiliation:

1. Institute of Theoretical Chemistry and Center for Molecular Biosciences, University of Innsbruck, Austria

2. Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria

3. Institute of Virology and Antiviral Therapy, Friedrich Schiller University, Hans-Knoell-Straße 2, 07745 Jena, Germany

Abstract

Background: The pathogenicity of influenza A and B viruses depends on the function of influenza neuraminidase (NA). Emerging resistant influenza A viruses of subtype H1N1 increasingly challenge the effectiveness of established NA inhibitors. Recent computational studies have indicated several weak points of NA that can be exploited for rational inhibitor design to conquer this imminent threat, such as the opening of the binding pocket due to the flexibility of the 150-, 245- and 430-loops. Methods: We employed shape-focused virtual screening based on a recently discovered lead compound, katsumadain A, to identify novel promising compounds with significant inhibitory efficacy on NA and resistance-breaking capacity on oseltamivir-resistant strains. A potential binding mode of these compounds was derived employing ligand-based techniques and protein–ligand docking using representative protein conformations selected from molecular dynamics simulations. Results: Five novel compounds were identified by virtual screening. Their IC50 values, determined in chemiluminescence-based NA inhibition assays, are in the range of 0.18–17 µM. In particular, artocarpin exhibits high affinity toward three H1N1 oseltamivir-sensitive influenza A viruses. It also inhibits the NA of an oseltamivir-resistant H1N1 isolate.

Publisher

Future Science Ltd

Subject

Drug Discovery,Pharmacology,Molecular Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3