Electrochemiluminescence in bioanalysis

Author:

Rhyne Paul W1,Wong Oi T1,Zhang Yan J1,Weiner Russell S1

Affiliation:

1. Bristol-Myers Squibb Company, Pharmaceutical Candidate Optimization, Bioanalytical Sciences, Route 206 and Province Line Rd, Princeton, NJ 08543, USA

Abstract

The discovery of electrochemiluminescence (ECL) and its development as a means of detection is truly a success story. Although studies describing ECL were published in the early 1960s, most studies using ECL as a means of detection were not widely published until the mid 1990s. Incorporating ECL into assays provides increased sensitivity, several logs of dynamic range and the ability to electronically control the reaction. These characteristics provide advantages over assays that rely on radioisotopic labels, fluorescence and enzymatic activity. There have been many areas of science that have benefited from the use of ECL, including environmental microbiology, virology, neurobiology, molecular biology and immunology. ECL has improved the understanding and treatment of infectious diseases, cancer, neurodegenerative diseases and even sleep apnea disorders. Drug development has also benefited from ECL via improved assessment of pharmacodynamics, pharmacokinetics and determining immune responses against protein-based therapeutics. This review provides an overview of ECL chemistry and principles with a more detailed emphasis on the applications of ECL-based assays in different areas of science and medicine. The primary purpose of this review is to provide an in-depth discussion of the impact that ECL-based analysis has had on microbiology, immunology, virology, neurodegenerative diseases, molecular biology and drug development. Examples of ECL-based bioanalysis in each of these fields are discussed in conjunction with an overview of ECL principles and instrumentation.

Publisher

Future Science Ltd

Subject

Medical Laboratory Technology,Clinical Biochemistry,General Pharmacology, Toxicology and Pharmaceutics,General Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3