Development of a novel chemoinformatic tool for natural product databases

Author:

do Carmo Paulo Ricardo Viviurka1ORCID,Marcacini Ricardo2ORCID,Valli Marilia3ORCID,Silva-Silva João Victor3ORCID,Ferreira Leonardo Luiz Gomes3ORCID,Pilon Alan Cesar4ORCID,da Silva Bolzani Vanderlan4ORCID,Andricopulo Adriano D3ORCID,Marx Edgard1ORCID

Affiliation:

1. Agile Knowledge Engineering & Semantic Web (AKSW), Institute of Computer Science, Leipzig University, Leipzig, 04109, Germany

2. Computer Science & Mathematics Institute, University of São Paulo, São Carlos, SP, 13566-590, Brazil

3. Laboratory of Medicinal & Computational Chemistry, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, 13563-120, Brazil

4. Nuclei of Bioassays, Biosynthesis & Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, 14800-901, Brazil

Abstract

Aim: This study aimed to develop a chemoinformatic tool for extracting natural product information from academic literature. Materials & methods: Machine learning graph embeddings were used to extract knowledge from a knowledge graph, connecting properties, molecular data and BERTopic topics. Results: Metapath2Vec performed best in extracting compound names and showed improvement over evaluation stages. Embedding Propagation on Heterogeneous Networks achieved the best performance in extracting bioactivity information. Metapath2Vec excelled in extracting species information, while DeepWalk and Node2Vec performed well in one stage for species location extraction. Embedding Propagation on Heterogeneous Networks consistently improved performance and achieved the best overall scores. Unsupervised embeddings effectively extracted knowledge, with different methods excelling in different scenarios. Conclusion: This research establishes a foundation for frameworks in knowledge extraction, benefiting sustainable resource use.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Deutsche Forschungsgemeinschaft

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Future Science Ltd

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3