Molecular inhibitors of DNA repair: searching for the ultimate tumor killing weapon

Author:

Nikitaki Zacharenia1,Michalopoulos Ioannis2,Georgakilas Alexandros G1

Affiliation:

1. Physics Department, School of Applied Mathematical & Physical Sciences, National Technical University of Athens (NTUA), Iroon Polytechniou 9, Zografou 15780, Athens, Greece

2. Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Efesiou, Athens 11527, Greece

Abstract

DNA repair (DR) inhibitors are small molecules that interact with DR proteins in order to disrupt their function and induce a ‘strike’ to the high fidelity of the mammalian DNA repair systems. Many anticancer therapies aim to harm the DNA of the usually highly proliferative cancer cell, causing it to undergo apoptosis. In response to this, cancer cells attempt to fix the induced lesion and reconstitute its genomic integrity, in turn reducing the efficacy of treatment. To overcome this, DR inhibitors suppress DNA repair proteins’ function, increasing the potency and tumor killing effect of chemotherapy or radiotherapy. In this review, we discuss clinically applied novel inhibitors under translational investigation and we apply bioinformatic tools in order to identify repair proteins implicated in more than two phenomenically distinct DNA repair pathways (e.g., base excision repair and nonhomologous end joining), that is, the concept of ‘synthetic lethality’. Our study can aid towards the optimization of this therapeutic strategy and, therefore, maximizing treatment effectiveness like in the case of radiation therapy.

Publisher

Future Science Ltd

Subject

Drug Discovery,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3