Novel MS solutions inspired by MIST

Author:

Ramanathan Ragu,Josephs Jonathan L1,Jemal Mohammed2,Arnold Mark2,Humphreys W Griffith1

Affiliation:

1. Department of Biotransformation, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, NJ, 08540, USA

2. Bioanalytical and Discovery Analytical Sciences, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, NJ 08540, USA

Abstract

To improve patient safety and to help avoid costly late-stage failures, the pharmaceutical industry, along with the US FDA and International Committee on Harmonization (ICH), recommends the identification of differences in drug metabolism between animals used in nonclinical safety assessments and humans as early as possible during the drug-development process. LC–MS is the technique of choice for detection and characterization of metabolites, however, the widely different LC–MS response observed for a new chemical entity (NCE) and its structurally related metabolites limits the direct use of LC–MS responses for quantitative determination of NCEs and metabolites. While no method provides completely accurate universal response, UV, corona charged aerosol detection (CAD), radioactivity, NMR and low-flow (<20 µl/min) nanospray approaches provide opportunities to quantify metabolites in the absence of reference standards or radiolabeled material with enough precision to meet the needs of early clinical development.

Publisher

Future Science Ltd

Subject

Medical Laboratory Technology,Clinical Biochemistry,General Pharmacology, Toxicology and Pharmaceutics,General Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3