Metabolism of RCS-8, a synthetic cannabinoid with cyclohexyl structure, in human hepatocytes by high-resolution MS

Author:

Wohlfarth Ariane1,Pang Shaokun2,Zhu Mingshe3,Gandhi Adarsh S14,Scheidweiler Karl B1,Huestis Marilyn A1

Affiliation:

1. Chemistry & Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard Suite 200 Room 05A-721, Baltimore, MD 21224, USA

2. AB SCIEX, Redwood City, CA 94065, USA

3. Department of Biotransformation, Bristol-Myers Squibb Research & Development, Princeton, NJ 08543, USA

4. Present address: Department of Bioanalysis and Physiology, Lundbeck Research Inc., Paramus, NJ, USA

Abstract

Background: Since 2008, synthetic cannabinoids are major new designer drugs of abuse. They are extensively metabolized and excreted in urine, but limited human metabolism data are available. As there are no reports on the metabolism of RCS-8, a scheduled phenylacetylindole synthetic cannabinoid with an N-cyclohexylethyl moiety, we investigated metabolism of this new designer drug by human hepatocytes and high resolution MS. Methods: After human hepatocyte incubation with RCS-8, samples were analyzed on a TripleTOF 5600+ mass spectrometer with time-of-flight survey scan and information-dependent acquisition triggered product ion scans. Data mining of the accurate mass full scan and product ion spectra employed different data processing algorithms. Results & Conclusion: More than 20 RCS-8 metabolites were identified, products of oxidation, demethylation, and glucuronidation. Major metabolites and targets for analytical methods were hydroxyphenyl RCS-8 glucuronide, a variety of hydroxycyclohexyl-hydroxyphenyl RCS-8 glucuronides, hydroxyphenyl RCS-8, as well as the demethyl-hydroxycyclohexyl RCS-8 glucuronide.

Publisher

Future Science Ltd

Subject

Medical Laboratory Technology,Clinical Biochemistry,General Pharmacology, Toxicology and Pharmaceutics,General Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3