Utility of dried blood spot sampling and storage for increased stability of photosensitive compounds

Author:

Bowen Chester L,Hemberger Matthew D1,Kehler Jonathan R2,Evans Christopher A2

Affiliation:

1. Platform Technology & Science, Pharmaceutical Development, GlaxoSmithKline Pharmaceuticals, 1250 S Collegeville Road, Collegeville, PA 19426, USA

2. Platform Technology & Science, Drug Metabolism & Pharmacokinetics, Worldwide Bioanalysis & Systems Management, GlaxoSmithKline Pharmaceuticals, 709 Swedeland Road, King of Prussia, PA 19406, USA

Abstract

Background: Compound stability remains a major point of concern within pharmaceutical development. In attempts to minimize degradation, scientists may utilize acidification of samples prior to storage, dark chambers, decreased freezer temperatures and a variety of other stabilization techniques. All of these steps require additional procedures, increased costs and increased validation steps. Dried blood spots (DBS) are becoming a popular alternative to plasma sampling in many small- and even large-molecule applications. An investigation was performed in order to establish if DBS would provide storage advantages over liquid-based matrices for two light-sensitive compounds, nifedipine and omeprazole, to prevent or minimize photodegradation. Results: Experimental data has shown, through forced and natural photodegradation experiments, that the compounds nifedipine and omeprazole exhibit increased photostability when spotted and stored on various DBS paper, when compared with water, plasma or whole blood. For omeprazole, between 40 and 90% loss was observed in liquid matrices, while photodegradation was negligible when utilizing DBS. Some loss of nifedipine is noted during exposure conditions on DBS; however, photodegradation in liquid matrices is far more severe. Conclusion: Within the experimental compound set, DBS technology offers a significant reduction in the photodegradation process when compared with the liquid matrices water, plasma or blood.

Publisher

Future Science Ltd

Subject

Medical Laboratory Technology,Clinical Biochemistry,General Pharmacology, Toxicology and Pharmaceutics,General Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3