Novel antimicrobial iodo-dihydro-pyrrole-2-one compounds

Author:

Al-Matarneh Cristina M12ORCID,Nicolescu Alina3,Marinas Ioana C1ORCID,Chifiriuc Mariana C1,Shova Sergiu4,Silion Mihaela5,Pinteala Mariana2

Affiliation:

1. Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, Bucharest, 050095, Romania

2. Center of Advanced Research in Bionanoconjugates & Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania

3. NMR Laboratory “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania

4. Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania

5. Physics of Polymers & Polymeric Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania

Abstract

Aim: A series of new hybrid molecules with two iodine atoms on the sides were synthesized. Methods: A one-pot, two-component method with trifluoroacetic acid as an effective catalyst to obtain dihydro-pyrrol-2-one compounds was developed. Short reaction times, a cheap catalyst, high yields and clean work-up are benefits of this method. Results: The chemical structures of the newly synthesized compounds were verified through spectroscopic techniques. Their antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans was tested in vitro. Conclusion: NC- and OH- radicals confer broad-spectrum antimicrobial activity, including against Gram-positive and Gram-negative bacteria and yeasts. Compounds 3g >7 and >9 were most active on the two bacterial species, while 3l >9 and >3i were most active against the fungal strain.

Funder

ICUB Fellowship for Young Researchers

Publisher

Future Science Ltd

Subject

Drug Discovery,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3