An accelerated background subtraction algorithm for processing high-resolution MS data and its application to metabolite identification

Author:

Shekar Venkateswaran1,Shah Abhi1,Shadid Mohammad1,Wu Jing-Tao1,Bolleddula Jayaprakasam1,Chowdhury Swapan1

Affiliation:

1. Department of Drug Metabolism & Pharmacokinetics, Takeda Pharmaceuticals International Co., 35 Landsdowne Street, Cambridge, MA, USA

Abstract

Background: Metabolite identification without radiolabeled compound is often challenging because of interference of matrix-related components. Results: A novel and an effective background subtraction algorithm (A-BgS) has been developed to process high-resolution mass spectral data that can selectively remove matrix-related components. The use of a graphics processing unit with a multicore central processing unit enhanced processing speed several 1000-fold compared with a single central processing unit. A-BgS algorithm effectively removes background peaks from the mass spectra of biological matrices as demonstrated by the identification of metabolites of delavirdine and metoclopramide. Conclusion: The A-BgS algorithm is fast, user friendly and provides reliable removal of matrix-related ions from biological samples, and thus can be very helpful in detection and identification of in vivo and in vitro metabolites.

Publisher

Future Science Ltd

Subject

Medical Laboratory Technology,Clinical Biochemistry,General Pharmacology, Toxicology and Pharmaceutics,General Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3