Affiliation:
1. Department of Chemistry, Duke University, Durham, NC 27708, USA.
Abstract
The use of classical genetic and molecular biology methods along with the sequencing of many genomes has proven crucial for elucidating complex biological processes. Despite being invaluable tools, their limitations have led to a search for more versatile alternatives and, thus, to the use of small molecules. Chemical genetics is a rapidly emerging field that uses small-molecule techniques to probe biological systems and is composed of three parts: natural product or small-molecule libraries, phenotypic screening and target identification. Currently, the biggest hurdle in the overall process of chemical genetics is target identification. Efforts to overcome this obstacle have led to advances in the areas of affinity chromatography, yeast haploinsufficiency, complementary DNA (cDNA) overexpression, DNA microarray, small-molecule microarray and RNA interference (RNAi) technologies. While these technologies continue to undergo further optimization, they have been integral in the identification and/or confirmation of many cellular targets and have seen an increase in applications to the drug-development process.
Subject
Drug Discovery,Pharmacology,Molecular Medicine
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献