Antinuclear antibodies with nucleosome-restricted specificity for targeted delivery of chemotherapeutic agents

Author:

Torchilin Vladimir P1

Affiliation:

1. Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.

Abstract

Circulating antinuclear autoantibodies (ANAs) are well known to accompany various pathological conditions and can be artificially induced by immunization. Research and clinical data permit us to hypothesize a definite connection between cancer and ANAs. Based on the available data, my group’s research suggested that exogenous ANAs may be used as anticancer therapeutics. Among these ANAs, nucleosome-specific ANAs may be particularly useful. Advances in cancer immunotherapy with monoclonal antibodies re-emphasized the role of humoral immunity in neoplasia control. The development of a universal antibody targeting diverse cancers is of clear importance. We showed that certain natural ANAs recognize the surface of numerous tumor cells but not normal cells via cell surface-bound nucleosomes originating from the apoptotically dying neighboring tumor cells, mediate antibody-dependent cellular cytotoxicity of tumor cells in vitro and inhibit the development of murine tumor in syngeneic mice. A single monoclonal antinuclear nucleosome-specific autoantibody, mAb 2C5, specifically recognizes multiple unrelated human tumor cell lines and accumulates at a high tumor-to-normal cell ratio in various human tumors in nude mice. Immunotherapy with mAb 2C5 resulted in significant suppression of the growth of several human tumors. In addition, mAb 2C5, when used in subtherapeutic quantities, can serve as a highly efficient specific ligand to target various drug- or diagnostic agent-loaded pharmaceutical nanocarriers, such as liposomes and polymeric micelles, to various tumors. Here, the data (accumulated predominantly in our laboratory over several years) on mAb 2C5-mediated tumor targeting of chemotherapeutic agents is reviewed.

Publisher

Future Science Ltd

Subject

Pharmaceutical Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3