Self-assembling peptides and their potential applications in biomedicine

Author:

Rymer Sarah-Jane1,Tendler Saul JB1,Bosquillon Cynthia2,Washington Clive3,Roberts Clive J

Affiliation:

1. Laboratory of Biophysics & Surface Analysis, School of Pharmacy, University of Nottingham, UK

2. Division of Drug Delivery & Tissue Engineering, School of Pharmacy, University of Nottingham, UK

3. Pharmaceutical Development, AstraZeneca, UK

Abstract

For many years, peptides have been known to self-assemble to form nano- and micro-scale structures. Their nature of assembly and assembled morphology has since been investigated as this area of research has important implications for the development of both drug delivery and tissue regeneration. In this article, we explore the process of peptide self-assembly in vivo, and experiments that exploit the structures formed. Particular focus is directed towards diphenylalanine, the simplest self-assembling peptide, which generally forms tube-like structures on assembly. In addition, different peptides that may assemble into a range of other morphologies are highlighted and potential applications in regenerative medicine and drug delivery discussed.

Publisher

Future Science Ltd

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3