Optimizing artificial neural network models for metabolomics and systems biology: an example using HPLC retention index data

Author:

Hall L Mark1,Hill Dennis W2,Menikarachchi Lochana C2,Chen Ming-Hui3,Hall Lowell H4,Grant David F2

Affiliation:

1. Hall Associates Consulting, Quincy, MA, USA

2. Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA

3. Department of Statistics, University of Connecticut, 69 North Eagleville Road, Storrs, C, 06269, USA

4. Department of Chemistry, Eastern Nazarene College, Quincy, MA, USA

Abstract

Background: Artificial Neural Networks (ANN) are extensively used to model ‘omics’ data. Different modeling methodologies and combinations of adjustable parameters influence model performance and complicate model optimization. Methodology: We evaluated optimization of four ANN modeling parameters (learning rate annealing, stopping criteria, data split method, network architecture) using retention index (RI) data for 390 compounds. Models were assessed by independent validation (I-Val) using newly measured RI values for 1492 compounds. Conclusion: The best model demonstrated an I-Val standard error of 55 RI units and was built using a Ward's clustering data split and a minimally nonlinear network architecture. Use of validation statistics for stopping and final model selection resulted in better independent validation performance than the use of test set statistics.

Publisher

Future Science Ltd

Subject

Medical Laboratory Technology,Clinical Biochemistry,General Pharmacology, Toxicology and Pharmaceutics,General Medicine,Analytical Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3