Author:
Wang Zhen, ,Huo Guanglei,Lan Hai,Hu Jianmin,Wei Xian, , , ,
Publisher
Aerospace Information Research Institute, Chinese Academy of Sciences
Reference31 articles.
1. Alimanov A and Islam M B. 2022. Retinal image restoration using Transformer and cycle-consistent generative adversarial network//2022 International Symposium on Intelligent Signal Processing and Communication Systems. Penang, Malaysia: IEEE:1-4 [DOI: 10.1109/ispacs57703.2022.10082822]
2. Chen N X, Zhang Y, Zen H G, Weiss R J, Norouzi M and Chen W. 2020. WaveGrad: estimating gradients for waveform generation [EB/OL]. [2023-08-17]. https://arxiv.org/pdf/2009.00713.pdf
3. Cheng P J, Lin L, Huang Y J, He H Q, Luo W H and Tang X Y. 2023. Learning enhancement from degradation: a diffusion model for fundus image enhancement [EB/OL]. [2023-08-17].https://arxiv.org/pdf/2303.04603.pdf
4. Cuadros J and Bresnick G. 2009. EyePACS: an adaptable telemedicine system for diabetic retinopathy screening. Journal of Diabetes Science and Technology, 3(3): 509-516 [DOI: 10.1177/193229680900300315]
5. Deng Z, Cai Y F, Chen L, Gong Z, Bao Q Q, Yao X, Fang D, Yang W M, Zhang S C and Ma L. 2022. RFormer: Transformer-based generative adversarial network for real fundus image restoration on a new clinical benchmark. IEEE Journal of Biomedical and Health Informatics, 26(9): 4645-4655 [DOI: 10.1109/jbhi.2022.3187103]