Author:
Hu Shuai, ,Gao Feng,Gong Zhuoran,Tao Shengen,ShangGuan Xinyu,Dong Junyu,
Publisher
Aerospace Information Research Institute, Chinese Academy of Sciences
Reference20 articles.
1. Arad B and Ben-Shahar O. 2016. Sparse recovery of hyperspectral signal from natural RGB images//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer:19-34 [DOI: 10.1007/978-3-319-46478-7_2]
2. Chen Y, Huang T Z, He W, Zhao X L, Zhang H Y and Zeng J S. 2022. Hyperspectral image denoising using factor group sparsity-regularized nonconvex low-rank approximation. IEEE Transactions on Geoscience and Remote Sensing, 60: #5515916 [DOI: 10.1109/TGRS.2021.3110769]
3. Gelvez-Barrera T, Arguello H and Foi A. 2022. Joint nonlocal, spectral, and similarity low-rank priors for hyperspectral-multispectral image fusion. IEEE Transactions on Geoscience and Remote Sensing, 60: #5537112 [DOI: 10.1109/TGRS.2022.3203294]
4. Hao J L, Xue J Z, Zhao Y Q and Chan J C W. 2023. Transformed structured sparsity with smoothness for hyperspectral image deblurring. IEEE Geoscience and Remote Sensing Letters, 20: #5500105 [DOI: 10.1109/LGRS.2022.3230205]
5. He W, Yao Q M, Li C, Yokoya N, Zhao Q B, Zhang H Y and Zhang L P. 2022. Non-local meets global: an iterative paradigm for hyperspectral image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(4): 2089-2107 [DOI: 10.1109/TPAMI.2020.3027563]