Author:
Yi Ding, ,Wei Zheng,Ji Geng,Luyi Qiu,Zhiguang Qin
Publisher
Aerospace Information Research Institute, Chinese Academy of Sciences
Subject
Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference42 articles.
1. Badrinarayanan V,Kendall A and Cipolla R. 2017. SegNet:a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39 (12):2481-2495[DOI:10.1109/TPAMI.2016.2644615]
2. Bakas S,Reyes M,Jakab A,Bauer B and Pawar K. Identifying the best machine learning algorithms for brain tumor segmentation,progression assessment,and overall survival prediction in the BRATS challenge[EB/OL].[2021-12-24]. https://arxiv.org/pdf/1811.02629.pdf
3. Benson E,Pound M P,French A P,Jackson A S and Pridmore T P. 2018. Deep hourglass for brain tumor segmentation//Proceedings of the 4th International Workshop on Brainlesion:Glioma,Multiple Sclerosis,Stroke and Traumatic Brain Injuries. Granada,Spain:Springer:419-428[DOI:10.1007/978-3-030-11726-9_37]
4. Chen H,Qin Z G,Ding Y,Tian L and Qin Z. 2020. Brain tumor segmentation with deep convolutional symmetric neural network. Neurocomputing, 392:305-313[DOI:10.1016/j. neucom. 2019. 01.111]
5. Chen L C,Zhu Y K,Papandreou G,Schroff F and Adam H. 2018a. Encoder-decoder with Atrous separable convolution for semantic image segmentation//Proceedings of the 15th European Conference on Computer Vision. Munich,Germany:Springer:833-851[DOI:10.1007/978-3-030-01234-2_49]