Smarandache-Based Ruled Surfaces with the Darboux Vector According to Frenet Frame in $E^3$

Author:

ŞENYURT Süleyman1,CANLI Davut2,ÇAN Elif2

Affiliation:

1. ORDU ÜNİVERSİTESİ

2. ORDU UNIVERSITY

Abstract

The paper introduces a new kind of special ruled surface. The base of each ruled surface is taken to be one of the Smarandache curves of a given curve according to Frenet frame, and the generator (ruling) is chosen to be the corresponding unit Darboux vector. The characteristics of these newly defined ruled surfaces are investigated by means of first and second fundamental forms and their corresponding curvatures. An example is provided by considering both the helix curve and the Viviani’s curve.

Publisher

Gaziosmanpasa University

Reference23 articles.

1. P. do-Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, Englewood Cliff, 1976.

2. A. Gray E. Abbena, S. Salamon, Modern Differential Geometry of Curves and Surfaces with Mathematica, Chapman and Hall/CRC, New York, 2017.

3. H. H. Hacısalihoğlu, Differential Geometry II, Ankara University Press, Ankara, 2000.

4. D. J. Struik, Lectures on classical differential geometry, Addison-Wesley Publishing Company, 1961.

5. M. Juza, Ligne De Striction Sur Unegeneralisation a Plusierurs Dimensions D’une Surface Regle, Czechoslovak Mathematical Journal 12 (1962) 243–250.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Another application of Smarandache based ruled surfaces with the Darboux vector according to Frenet frame in $E^{3}$;Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics;2023-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3