Affiliation:
1. RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ, FEN EDEBİYAT FAKÜLTESİ, MATEMATİK
Abstract
In this paper, we first establish the regular matrix $N$ using Narayana numbers. Then, we create new normed sequence spaces $Z(N)$ using the matrix $ N$ and demonstrate that these spaces are linearly isomorphic to $Z$ where $Z\in\{c_0, c, \ell_p, \ell_\infty\}$. Additionally, we provide inclusion relations for the spaces $c_0(N)$, $c(N)$, $\ell_p(N)$, and $\ell_\infty(N)$. Furthermore, we construct the Schauder bases of the $c_0(N)$, $c(N)$, and $\ell_p(N)$. Finally, we compute the $\alpha$-, $\beta$-, and $\gamma$-duals of these spaces and characterize the classes $(Z(N),X)$ for the certain choice of the sequence space $X$.
Reference32 articles.
1. J.-P. Allouche, T. Johnson, Narayana's cows and delayed morphisms, Journées d'Informatique Musicale (1996) 6 pages.
2. A. N. Singh, On the use of series in Hindu mathematics, Osiris 1 (1936) 606-628.
3. T. Koshy, Fibonacci and Lucas numbers with applications, 2nd Edition, John Wiley & Sons, New Jersey, 2019.
4. N. Sloane, The on-line encyclopedia of integer sequences, Mathematicae et Informaticae 41 (2013) 219-234.
5. G. Bilgici, The generalized order-$k$ Narayana's cows numbers, Mathematica Slovaca 66 (4) (2016) 795-802.