Affiliation:
1. GAZI UNIVERSITY
2. GAZİ ÜNİVERSİTESİ, FEN FAKÜLTESİ
Abstract
The theory of elliptic curves is one of the popular topics of recent times with its unsolved problems and interesting conjectures. In 1922, Mordell proved that the group of $\mathbb{Q}$-rational points on an elliptic curve is finitely generated. However, the rank of this group, signifying the number of independent generators, can be arbitrarily high for certain curves, a fact yet to be definitively proven. This study leverages the computer algebra system Magma to investigate curves with potentially high ranks using a technique developed by Mestre.
Reference42 articles.
1. D. Penney, C. Pomerance, A search for elliptic curves with large rank, Mathematics of Computation 28 (127) (1974) 851–853.
2. D. Penney, C. Pomerance, Three elliptic curves with rank at least seven, Mathematics of Computation 29 (131) (1975) 965–967.
3. F. Grunewald, R. Zimmert, Uber einige rationale elliptische Kurven mit treiem Rang ≥ 8, Journal für die Reine und Angewandte Mathematik 1977 (296) (1977) 100–107.
4. A. Brumer, K. Kramer, The rank of elliptic curves, Duke Mathematical Journal 44 (1977) 715– 743.
5. J.-F. Mestre, Construction d’une courbe elliptique de rang ≥ 12, Comptes Rendus de l’Academie des Sciences Paris 295 (1982) 643–644.