Prediction of Human Population Responses to Toxic Compounds by a Collaborative Competition

Author:

Bynagari Naresh Babu

Abstract

When it becomes completely possible for one to computationally forecast the impacts of harmful substances on humans, it would be easier to attempt addressing the shortcomings of existing safety testing for chemicals. In this paper, we relay the outcomes of a community-facing DREAM contest to prognosticate the harmful nature of environment-based compounds, considering their likelihood to have disadvantageous health-related effects on the human populace. Our research quantified the cytotoxicity levels in 156 compounds across 884 lymphoblastic lines of cells. For the cell lines, the transcriptional data and genotype are obtainable as components of the initiative known as the Tox21 1000 Genomes Project. In order to accurately determine the interpersonal variations between toxic responses and genomic profiles, algorithms were created by participants in the DREAM challenge. They also used this means to predict the inter-individual disparities of cytotoxicity-related data at the populace level from the organizational characteristics of the considered environmental compounds. A sum of 179 predictions was submitted and then evaluated at odds with experiment-derived data set to the blinded lot of participants. The cytotoxicity forecasts performed better than random, showcasing modest interrelations and consistency with a complexity of trait genomic prognostics. Contrastingly, the response of population-level predictions to a variety of compounds proved higher. The outcomes spotlight the likeliness of forecasting health-associated risks with regards to unidentified compounds, despite the reality that one’s risk with estimation accuracy persists as suboptimal. Most of the computational means through which chemical toxicity can be predicted are more often than not based on non-mechanistic cheminformatics-inspired solutions. They are typically also reliant on descriptions in QSAR arsenals and usually related to chemical structures rather vaguely. The majority of these computational methods for determining toxicness also employ black-box math algorithms. Be that as it may, while such machine learning models might possess much lower capacities for generalization and interpretability, they often achieve high accuracy levels when it comes to predicting a variety of toxicity results. And this is reflected unambiguously by the outcomes of the Tox21 competition. There is a huge capitalization on the ability of present-day Artificial Intelligence (AI) to determine the benchmark data of Tox21 with the aid of a series of 2D-rendered chemical drawings, using no chemical descriptors whatsoever. In particular, we processed some unimportant 2D-based molecules sketches within a controlled convolutional neural 2D network—also represented as 2DConvNet). We also demonstrated that today’s image recognition tech culminates in prediction correctness which can be compared to cutting-edge cheminformatics contraptions. Moreover, the 2DConvNet’s image-based model was evaluated comparatively dwelling on a set of external compounds from the stables of the Prestwick chemical library. They led to an experimental recognition of substantial and initially undocumented antiandrogen tendencies for diverse drugs in the generic and well-established categories.

Publisher

ABC Journals

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overcoming the Vanishing Gradient Problem during Learning Recurrent Neural Nets (RNN);Asian Journal of Applied Science and Engineering;2020-12-31

2. Enhancing Predictions in Ungauged Basins Using Machine Learning to Its Full Potential;Asian Journal of Applied Science and Engineering;2019-05-05

3. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium;Asian Journal of Applied Science and Engineering;2019-04-25

4. Do Internals of Neural Networks Make Sense in the Context of Hydrology?;Asian Journal of Applied Science and Engineering;2018-07-13

5. Multimodal Learning Analysis via Machine Learning and Deep Learning Methodologies;Asian Journal of Applied Science and Engineering;2018-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3