AI and Machine Learning for Remote Suspicious Action Detection and Recognition

Author:

Dekkati Sreekanth,Gutlapalli Sai Srujan,Thaduri Upendar Rao,Ballamudi Venkata Koteswara Rao

Abstract

There is little question that the unchecked rise in population is to blame for the alarming increase in crime rates seen in industrialized and developing nations. As a direct consequence of this, there has been an increase in the number of calls for the use of video surveillance to address concerns about ordinary life and private property. As a consequence of this, we need a system that is capable of accurately recognizing human activity in real-time. Researchers have lately investigated machine learning and deep learning as potential methods for identifying human activities. To prevent fraud, we devised a technique that employs human activity recognition to examine a series of occurrences, evaluate whether or not a person is a suspect, and then take appropriate action. This system used deep learning to assign labels to the video based on human behavior. We can detect suspicious behavior based on the categories mentioned above of human activity and time duration by utilizing machine learning, which achieves an accuracy of around one hundred percent. This research article will detect suspicious behavior using optimal, effective, and quick methods. Using popular public data sets, the experimental findings described here highlight the approach's remarkable performance while only requiring a small amount of computational complexity.

Publisher

ABC Journals

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3