Depolarization-Induced Calcium-Independent Synaptic Vesicle Exo- and Endocytosis at Frog Motor Nerve Terminals

Author:

Abdrakhmanov M. M.,Petrov A. M.,Grigoryev P. N.,Zefirov A. L.

Abstract

The transmitter release and synaptic vesicle exo- and endocytosis induced by constant current depolarization of nerve terminals were studied by microelectode extracellular recording of miniature endplate currents and fluorescent microscopy (FM 1-43 styryl dye). Depolarization of the plasma membrane of nerve terminals in the control specimen was shown to significantly increase the MEPC frequency (quantal transmitter release) and exocytotic rate (FM 1-43 unloading from the synaptic vesicles preliminarily stained with the dye), which was caused by a rise in the intracellular Ca 2+ concentration due to opening of voltage-gated Ca channels. A slight increase in the MEPC frequency and in the rate of synaptic vesicle exocytosis was observed under depolarization in case of blockade of Ca channels and chelating of intracellular Ca 2+ ions (cooperative action of Cd 2+ and EGTA-AM). The processes of synaptic vesicle endocytosis (FM 1-43 loading) were proportional to the number of synaptic vesicles that had undergone exocytosis both in the control and in case of cooperative action of Cd 2+ and EGTA-AM. A hypothesis has been put forward that Ca-independent synaptic vesicle exo- and endocytosis that can be induced directly by depolarization of the membrane exists in the frog motor terminal in addition to the conventional Ca-dependent process.

Publisher

Acta Naturae Ltd

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3