Author:
Headman Zachary C.,Matson Marcus C.,Schneider Robert P.,Potter James L.,Loguda-Summers Debra L.,Bhatia Shalini,Kondrashova Tatyana
Abstract
Abstract
Context
Various forms of simulation-based training, including training models, increase training opportunities and help assess performance of a task. However, commercial training models for lumbar puncture and epidural procedures are costly.
Objective
To assess medical students’ and residents’ perception of 3-dimensional (3D)-printed lumbar, cervical, and pelvic models for mastering joint injection techniques and to determine the utility of ultrasonography-guided needle procedure training.
Methods
Osteopathic medical students and residents used in-house 3D-printed gel joint models during an injection ultrasonography laboratory for mastering lumbar epidural, caudal epidural, sacroiliac, and facet joint injection techniques. After the laboratory, they answered a 17-item survey about their perception of the importance of the models in medical education and future practice. The survey also evaluated comfort levels with performing joint injections after using the models, overall satisfaction with the models, and likelihood of using models in the future.
Results
Thirty-six medical students and residents participated. Both students and residents agreed that 3D-printed models were easy to use, aided understanding of corresponding procedures, and increased comfort with performing joint injections (all P<.001). Most participants (35 [97.2%]) believed that the models were reasonable alternatives to commercial models. Over half felt capable of successfully performing cervical or pelvic (22 [61.1%]) and lumbar epidural (23 [63.9%]) injections. The majority of participants (34 [94.4%]) would like to use the models in the future for personal training purposes. Overall, 100% believed that the 3D-printed models were a useful tool for injection training.
Conclusions
Results suggest that 3D-printed models provided realistic training experience for injection procedures and seemed to allow participants to quickly master new injection techniques. These models offer a visual representation of human anatomy and could be a cost-saving alternative to commercial trainers.
Subject
Complementary and alternative medicine,Complementary and Manual Therapy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Experimental evaluation of impact-resistant gloves using surrogate hands;International Journal of Occupational Safety and Ergonomics;2022-04-04