Deep Learning Approaches for Predictive Modeling and Optimization of Metabolic Fluxes in Engineered Microorganism

Author:

Srikanth M.,M Bhanurangarao

Abstract

Deep learning approaches have emerged as powerful tools for predictive modeling and optimization of metabolic fluxes in engineered microorganisms. These approaches leverage the capabilities of deep neural networks to capture complex patterns and relationships in large-scale biological datasets. This paper provides an overview of the deep learning techniques commonly employed in this field, including Deep Neural Networks (DNNs), Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Generative Adversarial Networks (GANs), Reinforcement Learning (RL), and Transfer Learning. Each approach is briefly described, highlighting its potential applications in predicting and optimizing metabolic fluxes. The importance of data preprocessing, model architecture selection, and optimization techniques is also emphasized. The promising results obtained from these deep learning approaches suggest their potential to enhance metabolic engineering strategies and facilitate the design of more efficient and sustainable bioprocesses.

Publisher

HM Publishers

Reference30 articles.

1. Zanghellini J, Ruckerbauer DE, Hanscho M, et al. DeepMetabolism: Predicting flux distributions from high-throughput metabolomics data. Bioinformatics. 2018;34(5): 739-747.

2. Schaub J, Ma S, Ptashnyk M, et al. DeepReFlux: Deep learning for metabolic flux predictions. ACS Synth Biol. 2019;8(7): 1561-1570.

3. Pan SJ, Tsai WL, Kung SC. GAN-based metabolic flux optimization. BMC Bioinformatics. 2020;21(1): 496.

4. Li C, Cheng J, Sun F, et al. Reinforcement learning for metabolic engineering. Nat Commun. 2021;12(1): 1097.

5. Gupta A, Gu S, Xu D, et al. Transfer learning for metabolic flux prediction. PLoS Comput Biol. 2022;18(1): e1009685.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Parking Space Allocation System Using Open CV and Scikit-learn;Journal of Image Processing and Intelligent Remote Sensing;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3