ALLDMD Dissipation Energy Analysis by the Method Extended Finite Elements of a 2D Cracked Structure of an Elastic Linear Isotropic Homogeneous Material

Author:

Mohammed Bentahar

Abstract

The analysis of the crack parameters of a material is an important effect for characterizing the state of stress. Nowadays, materials occupy a very necessary place in modern industry for the study of the life of such structure. This article deals numerically the evolution of (ALLDMD) dissipation energy for an initial rectilinear crack of α=0°. Furthermore, the second case study is based on a crack inclined by the orientation angle α=15°, 30°, and 45°. The X-FEM extended finite element method was used. In addition, the linear elastic isotropic homogeneous material was applied. Thus, the 4-node quadratic CPS4R elements were used. The crack is then modeled numerically using the ABAQUS finite element calculation code. Characterization parameters such as ALLDMD dissipation energy and von Mises stress were calculated. In addition, the results obtained concerning the numerical simulation were compared and discussed between the different mesh approximate total size TGA=1, 2 and 3mm. A good correspondence was obtained between the different comparison results concerning the evolution of the Von Mises stress in all the modeling cases of our work.

Publisher

HM Publishers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fatigue Analysis of an Inclined Crack Propagation Problem by the X-FEM Method;International Journal of Applied and Structural Mechanics;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3