Support Vector Machine Classifier For Prediction Of Breast Malignancy Using Wisconsin Breast Cancer Dataset

Author:

reddy Anuradha1

Affiliation:

1. Assistant Professor, Department of CSE, Malla Reddy Institute of Technology & Science, Hyderabad, Telangana

Abstract

Cancer is the world's second largest cause of death. In 2018, 9.6 million people died from cancer. In any medical sickness, breast cancer is one of the most delicate and endemic diseases. This is one of the primary causes of female death in the world. Breast cancer kills one out of every eleven women around the world. "Early detection equals improved odds of survival," says a well-known cancer adage. As a result, early detection is essential for successfully preventing breast cancer and lowering morality. Breast Cancer is a type of cancer that affects one of the most significant issues that humanity has faced in recent decades has been diagnosis and prediction. Cancer detection that is accurate can save millions of lives. Effective technologies for diagnosing malignant breasts aid healthcare providers in diagnosing and treating patients in a fast and accurate manner. Experiments were carried out in this study to categorise breast cancer as benign or malignant using the Wisconsin Diagnosis Breast Cancer (WDBC) database. Support Vector Machine is a supervised learning technique (SVM). The SVM classifier's classification performance is evaluated. Experiments demonstrate that the SVM model has a fantastic performance, with a classification accuracy of 96.09 percent on the testing subset.

Publisher

HM Publishers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Examining Obstacles to Women's Advancement in Technical Careers;ICST Transactions on Scalable Information Systems;2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3