Fruits Leaf Disease Detection Using Convolutional Neural Network

Author:

Pantha Deepak

Abstract

Due to the traditional agricultural system, losses of millions of money have been loses every year. Farmers were always ready in agricultural work without risking their lives. If smart methods can be adopted in the agricultural system, the farmers will not have to suffer much damage. Using machine learning and testing with Convolutional Neural Network algorithm (mobileNet method), in this research to find out the actual accuracy, 3642 photos of apple leaves of Kaggle dataset and CSV files are used. In this paper, using Python language with the help of Jupyter notebook, Eposes has been tested 15 times to create confusion metrics. In this paper, precision, recall, f1_ score and average accuracy have been found and studied. An average accuracy of 95 percent has been obtained from the study. 95% accuracy is considered as a good result of the test using machine learning. By adopting this method, we can also give more motivation to the agricultural sector.

Publisher

HM Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3