Machine Learning for Heart Disease Prediction a Comparison Analysis

Author:

Tasnim Nishat,Tanvir Kazi,Sezan Sanjid Bin Karim

Abstract

Predicting cardiac conditions remains one of the most formidable tasks within the medical field today, with heart disease claiming a life every minute in the contemporary landscape. The data-rich healthcare industry necessitates the application of data science for efficient data processing. Given the intricate nature of prognosticating heart-related disorders, the automation of this process becomes a necessity, aiming to mitigate potential risks and offer timely alerts to patients. In this research endeavor, the heart disease dataset extracted from the UCI machine learning repository is employed. The proposed study embraces an array of data mining strategies, encompassing Logistic Regression, Decision Tree, Support Vector Machine (SVM), and Naive Bayes algorithm, to anticipate the likelihood of Heart Disease and stratify patient risk levels. This article undertakes a comparative analysis of various machine learning algorithms to assess their effectiveness. The trial outcomes indicate that, compared to other utilized ML algorithms, Support Vector Machine (SVM) emerges with the highest accuracy, registering at 90.48%.

Publisher

HM Publishers

Reference13 articles.

1. A. Golande, “Heart Disease Prediction Using Effective Machine Learning Techniques,” vol. 8, no. 1, 2019.

2. T. Nagamani, S. Logeswari, and B. Gomathy, “Heart Disease Prediction using Data Mining with Mapreduce Algorithm,” vol. 8, no. 3, 2019.

3. M. Shahreyar, R. Fahhoum, O. Akinseye, S. Bhandari, G. Dang, and R. N. Khouzam, “Severe sepsis and cardiac arrhythmias,” Ann. Transl. Med., vol. 6, no. 1, Jan. 2018, doi: 10.21037/atm.2017.12.26.

4. W. S. Andras Janosi, “Heart Disease.” UCI Machine Learning Repository, 1989. doi: 10.24432/C52P4X.

5. “Design And Implementing Heart Disease Prediction Using Naives Bayesian | Semantic Scholar.” https://www.semanticscholar.org/paper/Design-And-Implementing-Heart-Disease-Prediction-Repaka-Ravikanti/d1038f406d8662d07b4d95c22ff008f9307043c0 (accessed Aug. 14, 2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3