Dynamic Analysis of Soil-Structure Interaction in Earthquake-Prone Areas

Author:

Molua Collins O.,Ataman John O

Abstract

This study used a thorough experimental method to examine the dynamic interaction between soil and structures in earthquake-prone locations. The study challenge concentrated on how different soil types and configurations influence the diversity of structural reactions under seismic loading conditions. The research utilized a mixed methods approach, which involved quantitatively analyzing soil parameters and assessing structure dynamics. The methods employed included the creation of scaled replicas depicting common architectural structures situated on various soil types, including sandy, clayey, and mixed compositions. We used high-precision sensors to record ground motion characteristics such as Acceleration, velocity, and Displacement. The data was then evaluated using statistical methods such as ANOVA and regression analysis. The results revealed substantial differences in the structural reaction based on the type of soil and the parameters of the structure. Structures built on sandy soils saw greater peak accelerations (up to 0.170 g) but smaller displacements. On the other hand, structures on clayey soils had moderate accelerations (up to 0.140 g) but had bigger inter-story drifts. The varied soil layers, ranging from 1.500 Hz to 1.780 Hz, influenced the natural frequencies of the buildings. The damping ratios ranged from 5.000% to 7.800%, indicating that structural damping effectively reduces seismic forces. The results emphasized the critical importance of the interaction between soil and structures in seismic design and the necessity for customized engineering solutions based on the individual soil conditions at the site. Suggested measures include improving methods for soil characterization, optimizing structural dynamics using cutting-edge dampening technologies, and upgrading seismic design codes to enhance the ability of structures to withstand earthquakes in places prone to seismic activity.

Publisher

HM Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3