A Comparative Analysis of Regression Models for Software Effort Estimation

Author:

Rahman Md. Tanziar,Islam Md. Motaharul,Shorna Ummay Salma

Abstract

Software Effort Estimation is the utmost task in software engineering and project management. This is important to estimate cost properly and the number of people required for a project to be developed. Many techniques have been used to estimate cost, time, schedule and required manpower for software development industries. Nowadays software is developed in a more complex way and its success depends on efficient estimation techniques. In this research, we have compared five regression algorithms on different projects to estimate software effort. The main advantage of these models is they can be used in the early stages of the software life cycle and that can be helpful to project managers to conduct effort estimation efficiently before starting the project. It avoids project overestimation and late delivery. Software size, productivity, complexity and requirement stability are the input vectors for these regression models. The estimated efforts have been calculated using Ridge Regression, Lasso Regression, Elastic Net, Random Forest and Support Vector Regression. We have compared unitedly these models for the first time as software effort estimators. R-squared Score, Mean Squared Error (MSE) and Mean Absolute Error (MAE) are calculated for these regression models. Ridge, Lasso and Elastic Net show comparatively better results among others.

Publisher

HM Publishers

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3