Enhanced Collaborative Filtering Algorithm for Movies Recommendation using Big Five Personality Traits

Author:

Suleiman Aminu Y.,Abubakar Roko,Albaba Babangida A.

Abstract

Recommender System suffers from data sparsity and cold start problems which arises when there is no sufficient rating history for user who has recently log into the system and no proper recommendations can be made. This paper develops an Enhanced collaborative filtering algorithm for Movie recommender system Using genre and Big five Personality traits (EMUBP) as system’s input. The experimental result shows that the EMUBP system improved recommendation quality and accuracy by 8.33% compared with the existing state-of-the-art using precision, recall and MAE.

Publisher

HM Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3