Deep Learning Strategies for 5G and LTE Spectrum Sensing Communication

Author:

Albderi Suham A.

Abstract

The idea of 5G innovations is a prevalent instrument for the pace of transmission and gathering of data and the accessibility of permitting all over the place. Notwithstanding that the fifth era convergences will embrace a keen procedure for the data transmission process. Sending and getting signals work in high coordination in 5G networks, since this innovation arranges flexible, geostationary earthbound correspondence with other medium and little circuit correspondences with short steering in straight correspondences, and the correspondence incorporates signal processing as well as way finding. In this study the responsiveness improvement of the correspondence range will be tested by applying blended deep learning methods, in which the data cross-over will be diminished with the upgraded smart control. Utilizing blended deep learning methods, this study exhibits the huge difficulties presented by 5G transmissions in keenly detecting the LTE signal range and different data in 5G remote sensor networks. Way obstructions are recognized as the essential hindrance. The states of the correspondence framework ought to be considered while plotting the network and sensors for the fifth era.

Publisher

HM Publishers

Reference26 articles.

1. S. Ramjee, S. Ju, D. Yang, X. Liu, A. E. Gamal, and Y. C. Eldar, “Fast deep learning for automatic modulation classification,” arXiv preprint arXiv:1901.05850, 2019.

2. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.

3. K. Tekbıyık, O¨ . Akbunar, A. R. Ekti, A. Go¨rc¸in, and G. K. Kurt, “COSINE: Cellular cOmmunication SIgNal datasEt,” 2020. [Online]. Available: http://dx.doi.org/10.21227/safr-gh59

4. R. Roberts, W. Brown, and H. Loomis, “Computationally efficient algorithms for cyclic spectral analysis,” IEEE Signal Process. Mag., vol. 8, no. 2, pp. 38–49, Apr. 1991.

5. M. Zhang, M. Diao, and L. Guo, “Convolutional neural networks for automatic cognitive radio waveform recognition,” IEEE Access, vol. 5, pp. 11 074–11 082, 2017.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3