Development of an Improved Multi-filtering Matching Model for Fingerprint Recognition

Author:

Modupe Agagu

Abstract

Over the years research done in the area of fingerprint recognition in which the hybrid matching algorithm is one of the most common techniques, though the hybrid algorithm performed well but still faced with the challenge of false minutiae. This study formulated, simulated, and evaluated a multi-filtering fingerprint matching model to develop a multi-filtering matching model for fingerprint recognition. The method employed a multi-filtering model that was formulated using image pre-processing; minutiae feature extraction, post-processing, and cancellation of false minutiae algorithms in the processed images. The model was simulated using Matlab and fingerprint images from the Fingerprint Verification Competition (FVC) 2002 database. The performance of the model was evaluated using the False Acceptance Rate (FAR), False Rejection Rate (FRR), and Error Equal Rate (EER). The results showed that the false minutiae cancellation algorithm considerably reduced the false minutiae points in the thinned images which resulted in the reduction of false acceptance when two different images were tested, and also reduction in false rejection rate when two same images were tested. The match score was below the threshold value of 50 for false acceptance rate and above the threshold value of 50 for the false rejection rate. The error equal rate EER value of 0.076 was recorded. The study concluded that there was a significant reduction in the false minutiae points present in the thinned images and that a high accuracy of fingerprint matching was achieved when the datasets include poor quality fingerprint images.

Publisher

HM Publishers

Reference31 articles.

1. Akomolafe Dipo Theophilus, Ilori Abiola Olawale and Oluwatoyin Mary Yerokun (2018)

2. Establishing a Process for Cyber Related Crimes Investigation Through Digital Forensics. American Journal of Computer Science and Information Engineering Vol.5 No. 1 pp9-14

3. Anu M. (1997). Introduction to Modeling and Simulation. In: Proceeding of the 1997 Winter Simulation Conference: 7 – 14.

4. Noor A. (2012). A new Algorithm for Minutiae Extraction and Matching in Fingerprint. Unpublished PhD Thesis, Department of Electronic & Computer Engineering, Brunel University, UK.

5. Bana S. and Kaur D. (2011). Fingerprint Recognition Using Image Segmentation. International Journal of Advance Engineering Sciences and Technologies 5 (1): 12-23.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3