The Loma de Hierro Ni-laterite deposit (Venezuela): Mineralogical and chemical composition

Author:

Domènech Cristina,Galí Salvador,Soler Josep M.,Ancco Marite P. Ancco,Meléndez Williams,Rondón José,Villanova-de-Benavent Cristina,Proenza Joaquín A.

Abstract

Nickel laterite deposits developed on ultramafic rocks have traditionally been a significant source of Ni and Co and recently of Sc. Although the Loma de Hierro deposit (Venezuela) has been in operation for more than 50 years, it lacks detailed studies on the mineralogical and geochemical composition of the lateritic profile. In this study, we present a geochemical and mineral description of the main carrier phases of Ni and Co in a complete profile of the deposit. The selected weathering profile has been developed from a partially serpentinized harzburgitic protolith and has a well-developed saprolitic horizon covered by a thin limonitic horizon. The geochemical signature of the profile is characterized by a significant Mg and Si decrease towards the top of the saprolite, with a clearly visible Mg discontinuity. The main Ni-bearing minerals are secondary serpentine (1–4 wt.% NiO) and kerolite-pimelite-dominated garnierite mixtures with serpentine (18–22 wt.% NiO). Limonite is rich in goethite (0–1.85 wt. % NiO), gibbsite, and Mn-oxy-hydroxides. The latter have intermediate compositions between lithiophorite and asbolane (2–13 wt.% CoO). The highest Sc grades (40–68 ppm) were observed in the limonite with amounts positively correlated with Fe content. Rare earth elements are mainly concentrated in the upper part of the saprolite horizon (60–80 ppm), while they have a lower content in the limonite (7–45 ppm). In this horizon, rare earth elements are clearly associated with Fe, indicating adsorption and/or coprecipitation. This association was not observed in the saprolite, suggesting that other minerals (e.g., clay minerals) are controlling their concentration; more information is needed to identify the rare earth element-bearing minerals. The lateritic profile of Loma de Hierro can be classified as representative of hydrated Mg silicate deposits, and was formed in a context of continuous tectonic uplift and a low water table conditions favoring the development of a thick saprolitic horizon and the precipitation of kerolite-pimelite-dominated garnierites.

Publisher

Sociedad Geologica Mexicana

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3