Author:
Cejudo Rubén,Bayona Germán,Goguitchaichvili Avto,Cervantes Miguel,Bautista Francisco,Mendiola Fabiola
Abstract
El uso de redes neuronales artificiales (RNA) permite usar un número limitado de variables para predecir el comportamiento de algún fenómeno con muy buenos resultados. En este trabajo, se usó un modelo de RNA para identificar sitios con altas concentraciones de metales pesados a partir de parámetros magnéticos. El estudio se hizo en muestras de polvo urbano provenientes de la red vial de la Ciudad de Bogotá, Colombia. Los resultados de este estudio documentan una extensa distribución de material magnético y metales pesados (Cr, Cu, Ni, Pb, V y Zn) en los polvos urbanos, y se detectó que existen varios sitios, en las vialidades, que mostraron concentraciones altas de metales pesados con valores de índice de contaminación de carga mayores a 3. Varios modelos de redes neuronales fueron probados, encontrando que la arquitectura: 3, 2 neuronas permite pronosticar de forma confiable los sitios contaminados a través de parámetros magnéticos (el error cuadrático medio fue 3.14 y el coeficiente de correlación entre los valores reales y los valores estimados fue de 0.60).
Publisher
Sociedad Geologica Mexicana
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献