Histopathology of Fusarium wilt of staghorn sumac (Rhus typhina) caused by Fusarium oxysporum f. sp. callistephi race 3. I. Modes of tissue colonization and pathogen peculiarities

Author:

Ouellette Guillemond B.1,Cherif Mohamed2,Simard Marie1,Bernier Louis3

Affiliation:

1. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P.O. Box 10380, Succ. Sainte-Foy, Québec (Québec), Canada G1V 4C7

2. Institut National Agronomique de Tunisie, 43 Charles Nicolle, 1082 Tunis-Mahrajène, Tunisie

3. Centre de recherche en biologie forestière, Pavillon C.-E. Marchand, Université Laval, Québec (Québec), Canada G1K 7P4

Abstract

Light and transmission electron microscope studies of naturally infected or inoculated staghorn sumac plants by Fusarium oxysporum f. sp. callistephi race 3 are reported. Diverse extrinsic material (including latex in some instances) or elements occurred in vessel lumina. Some of this material labelled for pectin, often in association with tyloses, as did other opaque matter in paratracheal cells, related to alterations of their protective layer. Pronounced alterations of pit membranes of bordered pits occurred, with their outer portions disrupted into bodies of opaque matter, strongly labelled for cellulose, and their middle portions as unlabelled shreds. Similarly labelled opaque bodies occasionally occurred on vessel walls and lumina. Direct penetration of host cell secondary walls by the pathogen occurred, but these were degraded to any extent only following intramural invasion. Vessel walls, at all stages of infection, were lined with variously structured matter: in their thinnest forms, by single or paired, equidistant or widely spaced opaque bands, and in their thickest forms as alternating opaque and less opaque layers. Other thin elements, often enclosing opaque material, vesicular structures, or occasionally particles of ribosomal appearance were also delineated by similar but frequently infolded bands. These elements were sometimes observed to be confluent with fungal cells and to label for chitin. Many fungal elements were bound by only a thin or defective lucent wall layer, practically unlabelled for chitin, or by a locally thickened, labelled one; labelling for this substrate was also frequently associated with the fungal cell outer opaque wall layer or with some outer extracellular matter. Fine filamentous structures, connected to fungal cells, to the vessel lining matter, and to these other elements, extended into host walls. The lining itself generally did not label for cellulose or chitin. These observations are discussed in comparison with similar observations made regarding other wilt diseases that we have studied.

Publisher

Consortium Erudit

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3