Wittgenstein et le lien entre la signification d’un énoncé mathématique et sa preuve

Author:

Marion Mathieu1,Okada Mitsuhiro2

Affiliation:

1. Université du Québec à Montréal

2. Université Keio

Abstract

La thèse selon laquelle la signification d’un énoncé mathématique est donnée par sa preuve a été soutenue à la fois par Wittgenstein et par les intuitionnistes, à la suite de Heyting et de Dummett. Dans ce texte, nous nous attachons à clarifier le sens de cette thèse chez Wittgenstein, afin de montrer en quoi sa position se distingue de celle des intuitionnistes. Nous montrons par ailleurs que cette thèse prend sa source chez Wittgenstein dans sa réflexion, durant la période intermédiaire, sur la notion de preuve par induction. Nous esquissons aussi les grandes lignes de la réponse que Wittgenstein fait à un certain nombre d’objections, dont celle selon laquelle cette thèse, dans le sens qu’il lui donne, remet en question la possibilité même de formuler une conjecture en mathématique. Nous terminons en montrant comment les propos de Wittgenstein trouvent un écho favorable dans le paradigme contemporain de la “proposition comme type” et les extensions de l’isomorphisme de Curry-Howard dont il est issu.

Publisher

Consortium Erudit

Subject

General Materials Science

Reference56 articles.

1. Ambrose, A. « Proof and the Theorem Proved », dans Essays in Analysis, Londres, Allen & Unwin, 1966, 13-25.

2. Boas, R. P. Invitation to Complex Analysis, New York, Random House, 1987.

3. Boldini, P. « La priorité de la preuve : le cas de la signification non standard des constantes non logiques », Revue internationale de philosophie, no 230, 2004, 437-447.

4. Coquand, T. « Sur l’analogie entre les propositions et les types », dans G. Cousineau, P.-L. Curien et B. Robinet (dir.), Combinators and Functional Programming Languages, Berlin, Springer, 1986, 71-84.

5. Diamond, C. « Riddles and Anselm’s Riddle », dans The Realistic Spirit. Wittgenstein, Philosophy, and the Mind, Cambridge MA, MIT Press, 1991, 267-289.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intuition, Iteration, Induction;Philosophia Mathematica;2023-11-10

2. Wittgenstein's Struggle with Intuitionism;Wittgenstein’s Philosophy in 1929;2023-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3