Orthophosphate ion adsorption onto raw shrimp shells

Author:

Abidar Fatiha1,Morghi Mohamed1,Abali M’hamed1,Sinan Fouad1,Chiban Mohamed1,Eddaoudi Hassan1,Zebret Mohamed2

Affiliation:

1. Université Ibn Zohr, Faculté des Sciences, BP 8106 Hay Dakhla, Agadir, Morocco

2. Université Ibn Zohr, Faculté des Sciences, BP 8106 Hay Dakhla, Agadir, Morocco, Phone: + 212 (0) 5 28 22 09 57

Abstract

The aim of this work was to develop new low-cost adsorbents obtained from animal origins, available in large quantities and environmentally friendly. Raw shrimp shell (RSS), a biomaterial of animal origin, is abundant, available, renewable and non-toxic. It has physicochemical properties that can induce a significant adsorptive activity. In this study, the removal of phosphate anions (H2PO4-, HPO42-) from aqueous solution by adsorption onto raw shrimp shells was studied. The surface micro-morphology of the biomaterial was investigated using scanning electron microscope and qualitative element composition was analyzed using energy dispersive X-ray and infrared spectroscopies. The efficiency of the biomaterial was investigated using a batch adsorption technique under different experiment conditions, achieved by varying parameters such as adsorbent dosage, the contact time, the initial phosphate anion concentrations, the temperature and the initial solution pH. Results show that the kinetics adsorption of phosphate ions by the biomaterial is relatively quick and the biomaterial showed a high adsorption capacity of 0.20 g∙g-1 and 0.4 g∙g-1 for HPO42- and H2PO4-, respectively. The adsorption data were analyzed using the Langmuir, Freundlich and Temkin adsorption isotherms to determine the nature of the adsorption sites. Both Langmuir and Freundlich adsorption models showed good fits to the experimental adsorption data.

Publisher

Consortium Erudit

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3