Factors affecting regeneration from root fragments in two Physalis species

Author:

Abdullahi A.E.,Cavers P.B.

Abstract

Smooth ground-cherry (Physalis virginiana var. subglabrata) and clammy ground-cherry (P. heterophylla) are native weeds that are becoming more common in arable land in southern Ontario. Much of their success stems from vegetative propagation, especially after dispersal of root fragments during cultivation. Root fragments of different lengths, collected at different life cycle stages, from different parts of the root System and replanted at different depths and orientations in the soil, were tested for regeneration in the field and the greenhouse. No fragments left on the soil surface regenerated. Shallow (5 cm) burial led to the fastest regeneration. Fragments as short as 2.5 cm regenerated but the highest percentage regeneration was from fragments 10- cm long. Orientation had no effect on the capacity of root fragments to regenerate nor on the time taken to regenerate in either species. In both species, fewer root fragments sampled from plants at the fruit dispersal stage regenerated in the same season than fragments obtained at the early vegetative stage. Root fragments obtained from parts of the root System closest to the crown had the least regeneration. Root fragments with preformed visible buds at planting time regenerated faster than those with no preformed buds. In both the greenhouse and the field, smooth ground-cherry shoots emerged faster than those of clammy ground-cherry. These results suggest that reduction in ground-cherry infestations could be achieved by cultivating and dragging fragments to the surface.

Publisher

Consortium Erudit

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3