Induction of resistance in tomato against buckeye rot (Phytophthora nicotianae var. parasitica)

Author:

Sharma Adikshita1,Shridhar B. P.1,Sharma Amit2,Sharma Monica13

Affiliation:

1. Department of Plant Pathology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh 173 230, India

2. Department of Basic Sciences, College of Horticulture and Forestry, Neri, Hamirpur, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh 173 230, India

3. Department of Plant Pathology, College of Horticulture and Forestry, Neri, Hamirpur, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh 173 230, India

Abstract

Buckeye rot disease of tomato caused by Phytophthora nicotianae var. parasitica is the most destructive disease for reducing tomato yields especially in those regions where fruiting coincides with rainy season. In the present study, the pathogen was characterized by sequencing the DNA region coding for internal transcribed spacer (ITS) region and sequence was deposited in NCBI with accession no. MF398189. The phylogenetic analysis using the Maximum Composite Likelihood (MCL) approach revealed that the isolated pathogen clustered together with P. nicotianae with high bootstrap value of 99%. Incubation period of 120 h was observed in pin-prick method of pathogen inoculation compared to 168 h in surface inoculation method. Further, the disease resistance induced by nine different elicitors of induced resistance against buckeye rot disease of tomato were studied under field conditions for two consecutive years 2016 and 2017. Minimum disease incidence of 9.57% and 7.93% was observed with foliar spray of ß-aminobutyric acid (2 mM) for 2016 and 2017, respectively. It was followed by potassium chloride (100 mM) with disease incidence of 11.32% and 8.85% for year 2016 and 2017, respectively. Maximum fruit yield of 7.02 kg and 8.12 kg was found in treatment with ß-aminobutyric acid as compared to 2.61 kg and 2.55 kg in control for year 2016 and 2017, respectively.

Publisher

Consortium Erudit

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3