Reinforcement of GFRP Tensile Specimens with Central Holes Using Bonded Composite Patches

Author:

Paiva Fernando E.L.,Reis João M.L.,Costa Mattos Heraldo S. da

Abstract

The use of bonded composite patches is a promising repair/reinforcement method to extend service live of damaged structures. These patches are non-corroding, lightweight, easy to fabricate and have high specific modulus and strength. In this work, the tensile behavior of a patch-reinforced composite specimen with a central hole is analyzed experimentally. A 10-ply composite tensile specimen is prepared by using bidirectional woven e-glass fabric and epoxy resin as the matrix material. The damage is created in the specimen by drilling three different holes with 3, 6 and 10 mm diameter at the center. The specimen is then reinforced by bonding composite patches or carbon steel patches with different lengths as external patches on both external surfaces. Tensile tests have been carried out on the undamaged, damaged, and repaired specimens. From the tensile tests, it was possible to verify the reduction of the strength (measured by the rupture force) of the specimens with holes of 3 mm, 6 mm and 10 mm. The patches were manufactured using the same glass fiber reinforced plastic, GFRP, used in the specimens or carbon steel. The patches were 25,0 mm wide, 2,5 mm thick. The length was 20 mm, 40 mm or 60 mm. It was found that GFRP patches has better efficiency than carbon steel patches. The repairs with GFRP patches were able to restore between 80% and 90% of the mechanical properties of the intact GFRP specimen without the necessity to replace the composite material.

Publisher

Savvy Science Publisher

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3