A Dynamic Regret Analysis and Adaptive Regularization Algorithm for On-Policy Robot Imitation Learning

Author:

Lee Jonathan,Laskey Michael,Tanwani Ajay Kumar,Aswani Anil,Goldberg Ken

Abstract

On-policy imitation learning algorithms such as Dagger evolve a robot control policy by executing it, measuring performance (loss), obtaining corrective feedback from a supervisor, and generating the next policy. As the loss between iterations can vary unpredictably, a fundamental question is under what conditions this process will eventually achieve a converged policy. If one assumes the underlying trajectory distribution is static (stationary), it is possible to prove convergence for Dagger. Cheng and Boots (2018) consider the more realistic model for robotics where the underlying trajectory distribution, which is a function of the policy, is dynamic and show that it is possible to prove convergence when a condition on the rate of change of the trajectory distributions is satisfied. In this paper, we reframe that result using dynamic regret theory from the field of Online Optimization to prove convergence to locally optimal policies for Dagger, Imitation Gradient, and Multiple Imitation Gradient. These results inspire a new algorithm, Adaptive On-Policy Regularization (AOR), that ensures the conditions for convergence. We present simulation results with cart-pole balancing and walker locomotion benchmarks that suggest AOR can significantly decrease dynamic regret and chattering. To our knowledge, this the first application of dynamic regret theory to imitation learning.

Publisher

EasyChair

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maestro-U: Leveraging Joint Speech-Text Representation Learning for Zero Supervised Speech ASR;2022 IEEE Spoken Language Technology Workshop (SLT);2023-01-09

2. UIT-HWDB: Using Transferring Method to Construct A Novel Benchmark for Evaluating Unconstrained Handwriting Image Recognition in Vietnamese;2022 RIVF International Conference on Computing and Communication Technologies (RIVF);2022-12-20

3. Low-Rank Decomposition for Rate-Adaptive Deep Joint Source-Channel Coding;2022 IEEE 8th International Conference on Computer and Communications (ICCC);2022-12-09

4. Gradient Guided Sampling Method for Imbalanced Learning;2022 4th International Conference on Control and Robotics (ICCR);2022-12-02

5. Improving Graph Neural Network with Learnable Permutation Pooling;2022 IEEE International Conference on Data Mining Workshops (ICDMW);2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3