Realization of Discovery for Burst Topic Transition Using the Topic Change Point Detection Method for Time-Series Text Data

Author:

Ishii Yuta,Ikegami Aiha,Nakanishi Takafumi

Abstract

In this paper, we present a realization method of discovery for burst topic transition using the topic change point detection method for time-series text data. In our method, we focus on the topic change point detection method for time-series text data. By similarity measure using the topic change point detection method for time-series text data, we can discover for burst topic transition. In general, when we would like to understand the outline or main points of an event, we often read articles written by people who know information about the event or ask others who are aware of the event to tell us about it. However, the information obtained by these means is hearsay from others and subject to third-party bias, it is difficult to comprehend the events objectively. In our paper, we focus on the topic change and extract the topic change point detection It enables us to discover burst topic transitions. In this paper, we describe an evaluation experiment of a prototype system using our discovery for burst topic transition to verify the effectiveness of our method. We also implement an application by the user interface that provides some crews of a trendy word.

Publisher

EasyChair

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Temporal Analysis of Editorial Trends in Major Newspapers Following the Prime Minister’s Speech;2024 IEEE 18th International Conference on Semantic Computing (ICSC);2024-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3