Author:
Kaths Heather,Keler Andreas,Kaths Jakob,Busch Fritz
Abstract
Operational behavior models are used in traffic simulations to represent the subconscious, short-termdecisions made by road users to respond to other road users, the infrastructure and traffic control measures. Calibration and validation of these models can be achieved using observed trajectory data from real road users. For lane bound traffic, it is assumed that road users intend to follow a given lane with a certain desired speed across the intersection. Any deviation from this planned path is in response to other road users or the environment. It is difficult, however, to identify and separate the desired movement of more flexible road users that do not follow lane disciple, such as bicyclists, from movements made as a reaction to other road users or obstacles. This can lead to poor calibration of operational behavior models and unrealistic behavior in the simulation. Tactical behavior models recreate the conscious decisions made on a time horizon of seconds to minutes to cope with the immediate traffic situation. As such, tactical behavior models are responsible for selecting the planned path across an intersection.Here, SUMO is coupled with the simulation software DYNA4 to create a simulated road environment for a bicycle simulator. Trajectories observed in reality are displayed as potential prescribed pathways across the simulated intersection. Participants in the simulator study are instructed to select and follow one of the prescribed pathways as closely as possible while responding naturally to other road users and obstacles in the environment. The resulting trajectory data is used to calibrate existing operation al and tactical path finding behavior models for bicyclists at signalized intersection.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献