STELLAR: A Generic EM Side-Channel Attack Protection through Ground-Up Root-cause Analysis

Author:

Das Debayan,Nath Mayukh,Chatterjee Baibhab,Ghosh Santosh,Sen Shreyas

Abstract

The threat of side-channels is becoming increasingly prominent for resource-constrained internet-connected devices. While numerous power side-channel countermeasures have been proposed, a promising approach to protect the non-invasive electromagnetic side-channel attacks has been relatively scarce. Today's availability of high-resolution electromagnetic (EM) probes mandates the need for a low-overhead solution to protect EM side-channel analysis (SCA) attacks. This work, for the first time, performs a white-box analysis to root-cause the origin of the EM leakage from an integrated circuit. System-level EM simulations with Intel 32 nm CMOS technology interconnect stack, as an example, reveals that the EM leakage from metals above layer 8 can be detected by an external non-invasive attacker with the commercially available state-of-the-art EM probes. Equipped with this 'white-box' understanding, this work proposes STELLAR: Signature aTtenuation Embedded CRYPTO with Low-Level metAl Routing, which is a two-stage solution to eliminate the critical signal radiation from the higher-level metal layers. Firstly, we propose routing of the entire cryptographic cores power traces using the local lower-level metal layers, whose leakage cannot be picked up by an external attacker. Then, the entire crypto IP is embedded within a Signature Attenuation Hardware (SAH) which in turn suppresses the critical encryption signature before it routes the current signature to the highly radiating top-level metal layers. System-level implementation of the STELLAR hardware with local lower-level metal routing in TSMC 65 nm CMOS technology, with an AES-128 encryption engine (as an example cryptographic block) operating at 40 MHz, shows that the system remains secure against EM SCA attack even after 1 M encryptions, with 67% energy-efficiency compared to the unprotected AES.

Publisher

EasyChair

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytical Side Channel EM Models, Extending Simulation Abilities for ICs, and Linking Physical Models to Cryptographic Metrics;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2023-12

2. Improved EM Side-Channel Analysis Attack Probe Detection Range Utilizing Coplanar Capacitive Asymmetry Sensing;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2023-12

3. Potential of Unsupervised Deep Learning for Detection of EM Side-Channel Attacks;2023 IEEE Physical Assurance and Inspection of Electronics (PAINE);2023-10-24

4. Template Attack Against AES in Counter Mode With Unknown Initial Counter;2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC);2023-03-08

5. PG-CAS: Pro-Active EM-SCA Probe Detection Using Switched-Capacitor-Based Patterned-Ground Co-Planar Capacitive Asymmetry Sensing;IEEE Open Journal of Circuits and Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3