Automating Bird Detection Based on Webcam Captured Images using Deep Learning

Author:

Mirugwe Alex,Nyirenda Juwa,Dufourq Emmanuel

Abstract

One of the most challenging problems faced by ecologists and other biological re- searchers today is to analyze the massive amounts of data being collected by advanced monitoring systems like camera traps, wireless sensor networks, high-frequency radio track- ers, global positioning systems, and satellite tracking systems being used today. It has become expensive, laborious, and time-consuming to analyze this huge data using man- ual and traditional statistical techniques. Recent developments in the deep learning field are showing promising results towards automating the analysis of these extremely large datasets. The primary objective of this study was to test the capabilities of the state-of- the-art deep learning architectures to detect birds in the webcam captured images. A total of 10592 images were collected for this study from the Cornell Lab of Ornithology live stream feeds situated in six unique locations in United States, Ecuador, New Zealand, and Panama. To achieve the main objective of the study, we studied and evaluated two con- volutional neural network object detection meta-architectures, single-shot detector (SSD) and Faster R-CNN in combination with MobileNet-V2, ResNet50, ResNet101, ResNet152, and Inception ResNet-V2 feature extractors. Through transfer learning, all the models were initialized using weights pre-trained on the MS COCO (Microsoft Common Objects in Context) dataset provided by TensorFlow 2 object detection API. The Faster R-CNN model coupled with ResNet152 outperformed all other models with a mean average preci- sion of 92.3%. However, the SSD model with the MobileNet-V2 feature extraction network achieved the lowest inference time (110ms) and the smallest memory capacity (30.5MB) compared to its counterparts. The outstanding results achieved in this study confirm that deep learning-based algorithms are capable of detecting birds of different sizes in differ- ent environments and the best model could potentially help ecologists in monitoring and identifying birds from other species.

Publisher

EasyChair

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bird Species Classification: Using CNN Models;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3