A new strategy for synchronizing traffic flow on a distributed simulation using SUMO

Author:

Arroyo Nicolas,Acosta Andrés,Espinosa Jairo,Espinosa Jorge

Abstract

The Project Modelling and Control of Urban Traffic in the City of Medell ́ın (MOY- COT) has produced multiple results in modelling, simulation and control of multimodal urban traffic using the SUMO simulator. As the simulations became more complex the necessity to distribute the computational load rose. Therefore, an approach for network partitioning and border edges management was introduced. In this paper a new border edge management strategy is presented for distributed simulation with SUMO. Unlike the previous approaches, which were developed in Python programming language using the corresponding TraCI client and tools such as sumolib, the strategy presented in this work was developed in C++ using the TraCI client for this language. Additionally, this strategy involves a simplified process for network partitioning since the border edges are preserved in every partition, without the need of splitting them. In this case, neighboring partitions behave in a master-slave fashion, depending on whether the border edge is an incoming edge or an outgoing edge. Concretely, a given partition is a master for its incoming edges and a slave for its outgoing ones. Furthermore, all the vehicles are found in the master and the slave partitions, where the master partition controls its slaves through the TraCI commands slowDown and moveTo that correct the position of these vehicles. Simulation results show that this new strategy presents better precision than the previous one. The description of the new procedure for border edge management is detailed. Finally, it is compared with the previous approach and the non-distributed simulation using a free flow scenario and a scenario with queue formation is presented.

Publisher

EasyChair

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EGO-Centric, Multi-Scale Co-Simulation to Tackle Large Urban Traffic Scenarios;IEEE Access;2023

2. Edge-centric trust management in vehicular networks;Microprocessors and Microsystems;2021-07

3. QarSUMO;Proceedings of the 28th International Conference on Advances in Geographic Information Systems;2020-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3