Author:
JANMOHAMMADI Mohsen,AMANZADEH Tahereh,SABAGHNIA Naser,DASHTI Shahryar
Abstract
Nano-fertilizers are new generation of the synthetic<em> </em>fertilizers which contain readily available nutrients in nano scale range. Nano fertilizers are preferred largely due to their efficiency and environment friendly nature compared to conventional<em> </em>chemical<em> </em>fertilizers. To evaluate the effects of foliar spray<em> </em>of micronutrient nano-fertilizer (iron and zinc) and nano-titanium dioxide (nTiO<sub>2</sub>) solution on grain yield and its components in barley under supplemental<em> </em>irrigation conditions, a field experiment was carried out in the semi-arid highland region of Maragheh, Iran. Barley plants were separately treated with of chelated nano-scale zinc oxide (ZnO) and ferric oxide (Fe<sub>2</sub>O<sub>3</sub>) suspensions during tillering stage, booting and milky stages. Results revealed that days to<em> </em>anthesis and maturity significantly increased after application of both nano-fertilizers. Furthermore<em>,</em> a considerable improvement was observed in grain mass, spike length, number of the grains per spike, chlorophyll content, grain yield and harvest index by application of nano-fertilizer. However the impact of nano zinc fertilizer was more prominent than iron. Foliar application of nTiO<sub>2</sub> positively affected some morphophysiological characteristics like as days to<em> </em>anthesis, chlorophyll content and straw yield. The results suggest that the delivery of Zn into barley seedling through spray of nano-fertilizer can be an efficient nutrient management strategy in semi-arid regions. Overall, our result indicated that the integration of nanotechnology in fertilizer products can improve fertilizer use efficiency and significantly increase of barley yield. However, plant response to nanoparticles significantly depend on concentration and time of application as well as size, shape, and surface functionalization of the particles.
Subject
General Agricultural and Biological Sciences,Water Science and Technology
Cited by
101 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献