Molecular diversity of rice (Oryza sativa L.) genotypes in Malaysia based on SSR markers
-
Published:2022-12-30
Issue:4
Volume:118
Page:
-
ISSN:1854-1941
-
Container-title:Acta agriculturae Slovenica
-
language:
-
Short-container-title:AAS
Author:
ANISUZZAMAN Mohammad,ISLAM Mohammad Rafiqul,KHATUN Hasina,HAQUE Mohammad Amdadul,ISLAM Mahammad Shariful,AHSAN Mohammad Shamim
Abstract
Rice crop improvement is determined by the degree of genetic variability and the heritability of favorable genes. A total of twenty-five SSR markers were used to measure the level of polymorphism and genetic variation among the 65 rice genotypes. Twenty-one of the twenty-five SSRs were discovered to be polymorphic, whereas the rest were determined to be monomorphic. A total of 91 alleles were found in 21 SSR markers, with an average of 4.00 alleles which ranged from 3 (RM335, RM551, RM538 RM190, RM242 and RM270) to 7 (RM263). The average PIC value was 0.62 ranging from 0.28 (RM 270) to 0.76 (RM 481). The rice genotypes were divided into nine primary clusters by a dendrogram based on NTSYS software’s UPGMA analysis. The cluster analysis revealed that these genotypes were divided into nine clusters where cluster IB-1a has the most genotypes (31) followed by cluster IB-1b (24).The genotype BR24 and Utri as well as Pukhi and WANGI PUTEH had the highest dissimilarity coefficient values indicating genotype diversity. These accessions have a lot of genetic diversity among the constituents; thus, they could be used directly in a hybridization program to improve yield-related parameters.
Publisher
University of Ljubljana
Subject
General Agricultural and Biological Sciences,Water Science and Technology
Reference33 articles.
1. Anderson, J. A., Churchill, G. A., Autrique, J. E., Tanksley, S. D., & Sorrells, M. E. (1993). Optimizing parental selection for genetic linkage maps. Genome, 36(1), 181–186. https://doi.org/10.1139/93-024 2. Ashraf, H., Husaini, A. M., Ashraf Bhat, M., Parray, G., Khan, S., & Ganai, N. A. (2016). SSR based genetic diversity of pigmented and aromatic rice (Oryza sativa L.) genotypes of the western Himalayan region of India. Physiology and Molecular Biology of Plants, 22(4), 547–555. https://doi.org/10.1007/s12298-016-0377-8 3. Becerra, V., Paredes, M., Ferreira, M. E., Gutiérrez, E., & Díaz, L. M. (2017). Assessment of the genetic diversity and population structure in temperate japonica rice germplasm used in breeding in Chile, with SSR markers. Chilean Journal of Agricultural Research, 77(1), 15–26. https://doi.org/10.4067/S0718-58392017000100002 4. Bohra, A., Jha, R., Pandey, G., Patil, P. G., Saxena, R. K., Singh, I. P., Singh, D., Mishra, R. K., Mishra, A., Singh, F., Varshney, R. K., & Singh, N. P. (2017). New hypervariable SSR markers for diversity analysis, hybrid purity testing and trait mapping in pigeonpea [Cajanus cajan (L.) Millspaugh]. Frontiers in Plant Science, 8(March), 1–15. https://doi.org/10.3389/fpls.2017.00377 5. Brumlop, S., & Finckh, M. R. (2011). Applications and potentials of marker assisted selection (MAS) in plant breeding: final report of the F+ E project” Applications and Potentials of Smart Breeding”(FKZ 350 889 0020)-on behalf of the Federal Agency for Nature Conservation.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|